
A look at the topology of convolutional neural
networks

Rickard Brüel Gabrielsson
Department of Computer Science

Stanford University
Stanford, CA 94305

rbg@cs.stanford.edu

Gunnar Carlsson
Department of Mathematics

Stanford University
Stanford, CA 94305

carlsson@stanford.edu

Abstract

Convolutional neural networks (CNN’s) are powerful and widely used tools. How-
ever, their interpretability is far from ideal. In this paper we use topological data
analysis to investigate what various CNN’s learn. We show that the weights of
convolutional layers at depths from 1 through 13 learn simple global structures.
We also demonstrate the change of the simple structures over the course of training.
In particular, we define and analyze the spaces of spatial filters of convolutional
layers and show the recurrence, among all networks, depths, and during training,
of a simple circle consisting of rotating edges, as well as a less recurring unantici-
pated complex circle that combines lines, edges, and non-linear patterns. We train
over a thousand CNN’s on MNIST and CIFAR-10, as well as use VGG-networks
pretrained on ImageNet.

1 Introduction

The problem of understanding how convolutional neural nets (CNN’s) work and learn is one of
the fundamental problems in machine learning. It is important to study both the weights and the
activations, as these roughly constitute the "coefficients" and the outputs in the computational model.
To date, work in this area [1, 17, 18, 19, 20] has involved direct human inspection of features
constructed in the network and has produced very interesting qualitative results. The goal of the
present paper is to demonstrate that data sets constructed out of the weights are organized in simple
topological models, which are strongly reminiscent of the results obtained in the topological analysis
of data sets of local patches in natural images [2]. Such topological models yield insight by effectively
summarizing the global structure of the spaces of weight configurations, and permit the exploration
of density in the data set. The key point here is that the study of the function of neural nets is a
problem in data analysis, since the density of particular features is clearly relevant, and since we
clearly find the presence of anomalous and spurious elements. It is important to model the most
strongly occurring motifs in a simple and understandable way.

The topological models we work with are part of topological data analysis (TDA) [3, 9, 15, 16],
which in addition to the construction of the models provide invariants of the shape of the data set
(persistent homology), that confirm that the shape of the data is as expressed in the model. We apply
methods of TDA to data sets of spatial filters of the convolutional layers. In the i-th convolutional
layer, an activation map is constructed by sliding a filter (a set of weights) along the spatial dimensions
of all activation maps in the (i − 1)-th layer. A filter thus has dimensions w × h × c, where w
and h are the width and height of the spatial receptive field of the filter while c is the number of
activation maps in the (i− 1)-th layer. We define a spatial filter as one set of w × h weights with a
fixed c-dimension. One single filter give c spatial filters and a convolutional layer with d number of
activation maps give d× c spacial filters of dimension w × h.

Preprint. Work in progress.

ar
X

iv
:1

81
0.

03
23

4v
1 

 [
cs

.C
V

] 
 8

 O
ct

 2
01

8



We perform analyses of CNN’s trained on the MNIST [5], CIFAR-10 [6], and ImageNet [7] data
sets. We find that in some cases, the models recapitulate the topological structures that occurred in
[2], namely the primary and secondary circles (see Figure 1), but that in other situations different
phenomena occur. This paper constitutes an exploratory analysis of the spatial filters described above.
We have chosen, due to space considerations, to present the findings as they are, without a thorough
discussion of what hypotheses we might construct based on them. We will return to the hypotheses
and theoretical analysis in future work.

2 Persistent Homology

Figure 1: Primary and Secondary Circles

Within the domain of topology, homology refers to
a collection of signatures that perform a sophisti-
cated counting task for features, such as connected
components, loops, spheres, etc. to obtain invari-
ants of topological spaces. Its extension to point
clouds is called persistent homology, which has
been undergoing rapid development over the last
15 years. For each dimension k, the output of per-
sistent homology is a barcode, i.e. an unordered
collection of intervals on the real line, where a
long bar indicates the presence of a feature that
lives over a large range of values and is hence regarded as “real”, and short bars are often attributed to
noise. The barcode is a multiscale summary analogous to the dendrograms that arise in hierarchical
clustering. For example, a long bar in the 1-dimensional bar code reflects the presence of a loop in
the data. These invariants have been used in many different situations. One such is the analysis of
local image patches performed in [2], which was motivated by the idea of understanding the tuning of
neurons in the primary visual cortex. One of the outcomes of that paper is illustrated above (Figure 1),
where we see that the data (suitably thresholded by density) is organized around three circles, which
overlap to a degree, and which reflect the tuning of neurons to edge and line detectors. The idea of
this paper is to perform this same analysis in the context of neural nets rather than the visual pathway.
We computed persistent homologies and their respective barcodes by using the Plex software [13].
We used LazyWitnessStream and MaxMinSelector with 100 landmarks as well as a max division of
1000 for all our persistence computations.

3 Mapper

The topological modeling method (”Mapper", see [10] for details) we use starts with one, two, or
three real valued functions on the data, which we refer to as lenses, as well as with a metric on the
data set. By choosing overlapping coverings of the real line by intervals of the same length and
overlap, we obtain coverings of R, R2, or R3, which allow us to bin the data into bins, one for each
set in the cover. We then perform a clustering step (single linkage clustering with a fixed heuristic for
the choice of threshold, specified in [12]) based on the metric to generate a set of clusters. Because
the intervals overlap, it is possible for clusters attached to one bin to overlap with clusters attached to
another bin, and we define a graph whose node set is the collection of clusters we have defined, and
where there is an edge connecting a pair of clusters if the two clusters share at least one data point.
The topological version of this construction is well known, and comes with guarantees concerning
the degree to which the construction approximates the original space. Such guarantees are not yet
available for Mapper, although work in this direction is being done [11].

For the clustering step in the Mapper method we use the Variance Normalized Euclidean (VNE)
metric. The VNE metric is a variant of standard Euclidean distance that first normalizes each
column of the data set by dividing by its variance. For lenses we use PCA 1 and 2, which means
that the point cloud is projected onto its two principal components before choosing overlapping
coverings. Our results generalize to other lenses such as Ayasdi’s Neighborhood Lens 1 and 2 [14]
which capture more non-linear features of the data. However, since PCA lenses often gave the
best-looking graphs and for sake of consistency and simplicity we only present results acquired
by use of the PCA lenses. We use the implementation of Mapper found in the Ayasdi software
[12]. In Ayasdi, resolution specifies the number of bins and gain determines the overlap as follows:

2



Table 1: M(X, Y, Z) CNN-architecture
Conv Layer 1 Conv Layer 2 FC layer Readout

3×3×X filters 3×3×Y filters Z nodes 10 nodes
ReLU ReLU ReLU Softmax, Cross Entropy
2×2 max-pooling 2×2 max-pooling Dropout 0.5, ADAM

percent overlap = 1− (1/gain). We specify Mapper by notation Mapper(resolution, gain). In
addition, the color of the nodes is determined by the number of points that the corresponding cluster
contains, with red being the largest and blue the lowest. This number is a rough proxy for density.

4 Density Filtration

To determine the core subset of a point cloud X we perform a density filtration of the points based on
a nearest neighbor estimate of the local density. For each x ∈ X and k > 0 we calculate its distance
to its k-th nearest neighbor, this distance being inversely correlated to the density at x. Then we take
the top p, 0 < p ≤ 1, fraction of the densest points. We can thus denote a density filtration with
parameters k and p applied to X by ρ(k, p,X).

5 Experiments

Our experiments were conducted on networks trained on the MNIST [5], CIFAR-10 [6], and ImageNet
[7] datasets. MNIST consists of gray scale images of digits, CIFAR-10 consists of natural color
images of 10 classes including airplanes, cats, dogs, and ships, and ImageNet consists of natural
color images of a wide variety of classes. CNN’s have achieved high accuracy all these data sets,
suggesting that CNN’s are able to learn structures present among the images in the data sets.

We specify the architecture of our CNN’s as in Table 1 and 2, where X, Y, Z corresponds to the depth
of the first convolutional layer, the depth of the second convolutional layer, and the number of nodes
in the fully connected layer respectively. If any of X, Y, or Z is 0 it means that that whole column
or block is removed from the network. E.g. M(64, 32, 64) is a network of type found in Table 1
with a first-convolutional-layer-depth of 64, a second-convolutional-layer-depth of 32, followed by
a fully connected layer with 64 nodes. For notational efficiency we use superscripts to specify the
convolutional layer from which the spatial filters were extracted and subscripts to specify the number
of batch iterations the network was trained on. Further, preceding this notation by ’N×’ means that
N trained networks were used as the source of the spatial filters. Thus, with previously developed
notation we can write Mapper(30, 3) of ρ(200, 0.2, 100 ×M1

100K(64, 32, 64)) to denote Mapper
with resolution 30 and gain 3 applied to a point cloud generated by a k-nearest-neighbor filtration with
k = 200, p = 0.2 of the mean-centered and normalized 1st convolutional layers’ spatial filters of 100
networks of type M(64, 32, 64) trained for 100,000 batch iterations. Throughout this work we treat
each spatial filter of a convolutional layer as a point, i.e. each point is (width×height)-dimensional.
We always mean-center and normalize each point, which is done before any density filtration. In
addition, the padding on the convolutional layers preserves spacial dimensionality and a batch size of
124 was used throughout the experiments. We used Tensorflow [8] for implementation.

5.1 MNIST

MNIST was divided into 60,000 training examples and 10,000 test examples. We train 100 CNN’s of
type M(64,32,64) (Table 1) for 40,000 batch iterations with a batch size of 128 to a test accuracy of
about 99.0%. These 100 trained CNN’s give us 64× 100 = 6400 9-dimensional points (first layer
spatial filters) which we mean-center and normalize. We then use k-nearest-neighbor density filtration
with k = 200 and p = 0.3 to get 1920 points. To this point cloud (equivalent to ρ(200, 0.3, 100×
M1

40K(64, 32, 64))) we apply Mapper (resolution = 30, gain = 3) with Variance Normalized
Euclidean Norm and two PCA lenses. The resulting graph can be seen in Figure 2. We also put, next
to the graph, the mean of adjacent points to represent the spatial filters at that position in the graph.
Recall that color codes for the size of the collection represented by the nodes, increasing from blue to
red.

3



Dimension 0

0 0.2 0.4 0.6

Dimension 1

0 0.2 0.4 0.6

Figure 2: Mapper(30, 3) and barcodes of
ρ(200, 0.3, 100×M1

40K(64, 32, 64))
Figure 3: Mapper(30, 3) of
ρ(10, 0.1,M2

40K(64, 32, 64)).

Table 2: C(X, Y, Z) CNN-architecture
Conv Layer 1 Conv Layer 2 FC layer Readout

3×3×X filters 3×3×Y filters Z nodes 10 nodes
ReLU ReLU ReLU Softmax
3×3 max-pooling, stride: 2 2×2 max-pooling, stride: 1 Cross Entropy
Local response normalization1 Local response normalization1 L2 loss, SGD

From this graph we see how the learned spatial filters are well approximated by the primary circle
(Figure 1). The circle is further supported by the corresponding barcodes (Figure 2), which show
one persistent loop or circle and one persistent connected component. We obtain almost identical
results as in Figure 2 with Mapper(30, 3) and barcodes of ρ(200, 0.3, 100×M1

40K(64, 0, 64)), i.e.
only having one convolutional layer. The results were also robust to other network configurations; the
primary circle was found in the first layer spatial filters of trained networks of types M(64, 8, 512),
M(64, 16, 512), and M(256, 32, 512).

For the same networks of typeM(64, 32, 64) used to generate Figure 2 we also obtain 64×32×100 =
204800 9-dimensional second layer spatial filters. After strong density filtration (p = 0.1, k = 10)
we find a very weak primary circle. In Figure 3 we display an example of Mapper applied to the
spatial filters learned by a single network (64× 32 filters) with filtration p = 0.32, k = 220.

5.2 CIFAR-10

CIFAR-10 was divided into 50,000 training examples and 10,000 test examples. The input was
preprocessed by taking a random 24 × 24 crop of the image, applying a random left-right flip,
mean-centering, and normalizing.

5.2.1 Grayscaled

The input was grayscaled using the weights (0.2989, 0.5870, 0.1140) for red, green, and blue respec-
tively. We train 100 CNN’s of configuration C(64, 32, 64) for 70,000 batch iterations (test accuracy
of about 77.0%) to obtain 6,400 first-layer spatial filters and 204,800 second-layer spatial filters. The
result of (p = 0.5, k = 200) density filtration and Mapper on the first-layer spatial filters can be
seen in Figure 5. We also train 48 CNN’s of configuration C(64, 0, 64) for 70,000 batch iterations
(test accuracy of about 69.2%) to obtain 3,072 first-layer spatial filters; the result of Mapper on these
first-layer filters can be see in Figure 4. Notice that that in both Figure 4 and 5 we find five cluster
structures but that the clusters differ between the two figures. In Figure 5 we find clusters around
horizontal and vertical lines while this is not the case in Figure 4. In neither of the ’well-trained’
networks were we able to find a significant primary circle.

1With depth radius of 4

4



Figure 4: Mapper(30, 3) of 48 ×
C1

70K(64, 0, 64).
Figure 5: Mapper(30, 3) of
ρ(200, 0.5, 100× C1

70K(64, 32, 64))

Figure 6: Mapper(30, 3) of
ρ(75, 0.37, C2

60K(64, 32, 64))

Dimension 0

0 0.2 0.4 0.6 0.8 1.0

Dimension 1

0 0.06 0.12 0.18 0.24 0.30

Figure 7: Barcodes of ρ(15, 0.1, 100 ×
C2

50K(64, 32, 64))

In Figure 7 we show the barcodes of the 204,800 second-layer spatial filters from the 100 CNN’s
of configuration C(64, 32, 64) trained for 50,000 batch iterations (test accuracy of about 76.2%)
and with density filtration p = 0.1, k = 15. In Figure 6 we show Mapper applied to the 2,048
second-layer spatial filters of a single CNN of configuration C(64, 32, 64) trained for 60,000 batch
iterations (test accuracy of about 77.1 %), and with density filtration p = 0.37, k = 75. Note that
even though we needed more networks to get the clear barcodes showing the circle in Figure 7, Figure
6 demonstrates that the primary circle (with some other weaker structures) appears in the training of
a single network.

Figure 8: Mapper(30, 3) of 100 × C1(64, 32, 64) and Mapper(70, 2) of ρ(15, 0.5, 100 ×
C2(64, 32, 64)) from 100-2000 batch iterations. Best viewed in color.

5



Next we look at the spatial filters of the first and second convolutional layers of 100 CNN’s of
configuration C(64, 32, 64) at batch iterations 100 to 2000. In Figure 8 we see Mapper applied to
both these point clouds. The vertical axis specifies the index of the convolutional layer (1st or 2nd)
and the horizontal axis specifies the number of batch iterations. For the 2nd layer spatial filters a
density filtration of p = 0.5, k = 15 was applied, while no density filtration was applied to the first
layer. We find that in the first layer the primary circle reveals itself at 400 batch iterations, breaks
apart at 500 batch iterations, and then starts to reappear in the second layer at 2000 batch iterations.
Note that the four edges in the first layer shown at 200 and 1000 iterations appear relatively stable
over many batch iterations.

5.2.2 Color

We train 60 CNN’s of configuration C(64, 32, 64) for 100,000 batch iterations (test accuracy of about
81.2%). This gives us 11,520 first-layer spatial filters and 204,800 second-layer spatial filters. In
Figure 9 we show Mapper applied to the 11,520 first layer spatial filters at 100,000 batch iterations
and density filtration p = 0.14, k = 200. In Figure 10 we show Mapper applied to the 2,048 second
layer spatial filters of a single network at 50,000 batch iterations (test accuracy of about 79.9%) and
density filtration p = 0.32, k = 10.

Figure 9: Mapper(30, 3) of
ρ(200, 0.14, 60× C1

100K(64, 32, 64))
Figure 10: Mapper(30, 3) of
ρ(10, 0.32, C2

50K(64, 32, 64))

We compute the barcodes of the point cloud used to generate Figure 9 and find an equally persistent
circle and connected component as in the barcodes of Figure 2. We also compute the barcodes of all the
204,800 second-layer spatial filters at 100,000 batch iterations and density filtration p = 0.1, k = 15
and find similar support for the circle as found in the gray scaled case of Figure 7. In addition, we
look at the first layer spatial filters for each input channel, i.e. red, green, and blue, independently
and find the primary circle in each one.

Dimension 0

0 0.08 0.16 0.24 0.32 0.40

Dimension 1

0 0.08 0.16 0.24 0.32 0.40

Figure 11: Mapper(30, 3) and barcodes of ρ(200, 0.32, 82 × C∗1
30K(48, 0, 64)). *: Without max-

pooling

Next we train 82 CNN’s of configuration C(48, 0, 64) but without max-pooling and find among the
11,808 first layer spacial filters at 30,000 batch iterations (test accuracy of about 71.8%) and filtration

6



p = 0.32, k = 200 the two-circle model showed in Figure 11. We see that the circles intersect at two
points and that one of the circles (the weaker) is the primary circle while the other (the stronger) is a
strange circle we have not seen before. Two circles intersecting at two points have three loops and
one connected component, which can be seen among the barcodes in Figure 11.

Dimension 0

0 0.06 0.12 0.18 0.24 0.30

Dimension 1

0 0.06 0.12 0.18 0.24 0.30

Figure 12: Mapper(30, 3) and barcodes of ρ(100, 0.35, 100× C1
100K(64, 32, 64)).

A closer examination of the 11,520 first-layer spatial filters of the configuration C(64, 32, 64), trained
for 100,000 batch iterations at filtration p = 0.35, k = 100, shows that the three circle model found
in the image patch data [2] appears. The barcodes and Mapper applied to this point cloud can be seen
in Figure 12. Note the stronger outer primary circle and the two weaker secondary circles; each of
the secondary circles intersect the primary circle twice but they do not intersect each other.

Figure 13: Mapper(33, 2) of 60 × C1(64, 32, 64) and Mapper(60, 2) of ρ(100, 0.3, 60 ×
C2(64, 32, 64)) from 100-1500 batch iterations. Best viewed in color.

We look at the spatial filters of the first and second convolutional layers of 60 CNN’s of configuration
C(64, 32, 64) at batch iterations 100 to 1500. In Figure 13 we see Mapper applied to both these point
clouds. The vertical axis specifies the index of the convolutional layer (1st or 2nd) and the horizontal
axis specifies the number of batch iterations. Note, in the first layer, that the primary circle appears at
300 batch iterations, breaks apart at 500 iterations, and then reappears at 1500 batch iterations with
some inner secondary structures. The primary circle appears in the second convolutional layer at
1000 batch iterations.

5.3 ImageNet and VGG

We look at the spatial filters of a single pre-trained network VGG16 [4] trained on ImageNet. VGG16
contains 13 convolutional layers. The first layer only has 3× 64 = 192 spatial filters which proved
too few to locate a significant topological structure using Mapper or Plex. However, subsequent layers
have many more spatial filters. In Figure 14 we include the Mapper output of the 12 convolutional
layers following the first layer. For each layer we use Mapper(30, 3) and for layer 3-13 we use
ρ(100, 0.3) while for layer 2 we use ρ(100, 0.4).

In all but the last layer (layer 13) we find the primary circle as the dominant structure. We also
find some patches that have no counterpart in the Klein bottle model in [2], notably in layers

7



Figure 14: Mapper applied to the convolutional spatial filters of VGG16

5,6,8,11,12,and 13. Note that they appear in the higher layers and may reflect things detected in
higher layers in the human visual pathway. We also look at a pre-trained network VGG19 [4] where
we find other dominant structures at certain layers, for example already at layer 5 in VGG19 we find
the dominant circle in layer 13 of VGG16, see Figure 15. Also note that this circle closely resembles
that found in Figure 11.

6 Discussion

Figure 15: Mapper(30, 3) of
ρ(100, 0.3) of the fifth convolutional
layer in VGG19

The purpose of this paper is to demonstrate that topological
modeling can be used as an effective tool to obtain understand-
ing of the functioning of CNN’s. We have chosen not to draw
conclusions in the present paper because we want to expose
the results, and encourage others to formulate hypotheses from
this kind of analysis. Many of the results we found were un-
expected and non-trivial, and went beyond the results of the
motivating paper [2].

We have shown that the spaces of spatial filters learn simple
global structures. This is true not only for the first layer,
but occurs at least up to layers at depth 13. We have also
demonstrated the change of the simple structures over the
course of training.

Topological data analysis is thus a useful framework for the analysis of CNN’s. Most immediately, it
can make precise observations that have been made on an examination of individual weight vectors,
but we also feel that it can give new understanding and new findings that are not made clear by direct
examination of data points. CNN’s are clearly very powerful tools, and we hope to better understand
what and how they learn so that we might use them as way to help increasing human understanding
rather than replacing it.

8



References

[1] Zeiler, Matthew D. & Fergus, Rob. (2014) Visualizing and Understanding Convolutional Networks. Computer
Vision –ECCV 2014, pp. 818–833. Springer International Publishing

[2] Carlsson, Gunnar and Ishkhanov, Tigran and de Silva, Vin and Zomorodian, Afra. (2008) On the Local
Behavior of Spaces of Natural Images. International Journal of Computer Vision 76(1)1-12

[3] Carlsson, Gunnar. (2009) Topology and Data. Bulletin (New Series) of the American Mathematical Society
46(2) 255–308

[4] Karen Simonyan and Andrew Zisserman. (2014) Very Deep Convolutional Networks for Large-Scale Image
Recognition. CoRR 1409.1556

[5] Y. LeCun. The MNIST database of handwritten digits. http://yann.lecun.com/exdb/mnist.

[6] A. Krizhevsky. (2009) Learning multiple layers of features from tiny images. Technical report, University of
Toronto

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. FeiFei. (2009) Imagenet: A large-scale hierarchical
image database. In IEEE Conference on Computer Vision and Pattern Recognition.

[8] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving,
Michael Isard, Rafal Jozefowicz, Yangqing Jia, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané,
Mike Schuster, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Jonathon Shlens, Benoit Steiner,
Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. (2015) TensorFlow:
Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org.

[9] G. Carlsson. (2014) Topological pattern recognition for point cloud data. Acta Numerica 23 289-368

[10] G. Singh, F. Memoli, and G. Carlsson. (2007) Topological methods for the analysis of high dimensional
data sets and 3D object recognition. Point Based Graphics, Prague

[11] M. Carriere and S. Oudot. (2015) Structure and stability of the 1-Dimensional Mapper. arXiv:1511.05823.

[12] Ayasdi, TDA and machine learning (2016) https://www.ayasdi.com/wp-content/uploads/_downloads/wp-
tda-and-machine-learning.pdf

[13] Tausz, Andrew and Vejdemo-Johansson, Mikael and Adams, Henry. (2014) JavaPlex: A research software
package for persistent (co)homology. Lecture Notes in Computer Science 8592, pp. 129-136

[14] H. Sexton, J. Kloke. (2015) Systems and methods for capture of relationships within information. U.S.
Patent. 14/639,954. Filed Mar. 5, 2015

[15] Tierny, Julien. (2017) Topological data analysis for scientific visualization. Mathematics and Visualization.
Springer, Cham. ISBN: 978-3-319-71506-3; 978-3-319-71507-062-07

[16] Topological and statistical methods for complex data. Tackling large-scale, high-dimensional, and mul-
tivariate data spaces. Papers from the Workshop on the Analysis of Largescale, High-Dimensional, and
Multi-Dimensional and Multi-Variate Data Using Topology and Statistics held in Le Barp, June 12–14, 2013.
Edited by Janine Bennett, Fabien Vivodtzev and Valerio Pascucci. Mathematics and Visualization. Springer,
Heidelberg, 2015. ISBN: 978-3-662-44899-1; 978-3-662-44900-4 94-06

[17] Karen Simonyan, Andrea Vedaldi, Andrew Zisserman. (2014) Deep Inside Convolutional Networks:
Visualising Image Classification Models and Saliency Maps. arXiv:1312.6034

[18] Anh Nguyen, Jason Yosinski, Jeff Clune. (2016) Multifaceted Feature Visualization: Uncovering the
Different Types of Features Learned By Each Neuron in Deep Neural Networks. arXiv:1602.03616v2

[19] Anh Nguyen, Alexey Dosovitskiy, Jason Yosinski, Thomas Brox, Jeff Clune. (2016) Synthesizing the
preferred inputs for neurons in neural networks via deep generator networks. arXiv:1605.09304

[20] A. Mahendran and A. Vedaldi. (2015) Understanding deep image representations by inverting them. IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, 2015, pp. 5188-5196

9

http://yann.lecun.com/exdb/mnist
http://arxiv.org/abs/1511.05823
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1602.03616
http://arxiv.org/abs/1605.09304

	1 Introduction
	2 Persistent Homology
	3 Mapper
	4 Density Filtration
	5 Experiments
	5.1 MNIST
	5.2 CIFAR-10
	5.2.1 Grayscaled
	5.2.2 Color

	5.3 ImageNet and VGG

	6 Discussion

